设为首页收藏本站
搜索
查看: 4345|回复: 0
打印 上一主题 下一主题

分析节能技术进行供热制冷的优势

[复制链接]

85

主题

0

好友

87

积分

管理员

Rank: 9Rank: 9Rank: 9

金币
0
积分
87
精华
0
主题
85
帖子
87
跳转到指定楼层
1#
发表于 2014-4-17 06:53:00 |只看该作者 |倒序浏览
  我国随着城市建设的快速发展、人民生活水平的不断提高,人们对居住环境要求越来越高,形成了冬季南方采暖夏季北方空调的局面。但能源储量日益减少,节能减排工作已日趋紧迫,而热泵技术的应用,可使企业在供热领域开拓新的空间,实现节能减排的目的。正因此,热泵的运用在当前迅猛发展。
: c' D4 w2 ]* H! R& e0 X' [  ( J# j8 Q. m5 i& P8 c
  笔者认为热泵、集中供热及燃气供热各有自己的优势和局限性,在工程实践中应当发挥它们的综合优势,达到投资省、运行费用低,安全可靠地为建筑物供热制冷的目的。下面笔者对一个工程实例加以剖析。
8 S6 A# L# t8 w/ Q
% I5 b; @" b% a  o9 D  Y8 [, V  4 e  O1 G9 o) ?" ]' v0 o1 @
  1工程背景某8 a0 T- H1 Y& k" y8 U
  
, C% f% x0 G5 e6 u% S5 A  小区位于唐山市高新技术开发区,地理位置优越,环境优雅,该项目共分A、B、C、D四个区,其中A、C区为普通高层公寓,采用集中供热,共设一个热力站,只提供冬季供暖。B、D区为豪华别墅和跃层高级公寓,为唐山市顶级豪华小区,要求进行冬季供热、夏季制冷、一年四季24小时提供生活热水。
' @7 |4 I" v& x# ]" M  ; G! R% y# B- V/ d
  2方案制定该
9 o0 W+ K2 y2 D$ _" u* s- w  
/ D( E- B( b' Q$ V8 V  小区B、D区定位于高端建筑市场,需提供优质的供热、制冷及生活热水服务,为此,确定可再生能源供热、制冷方案。可再生能源应用属国家重点推广应用技术,具有环保、节能、可持续利用的特点。该项目供热(制冷)方案:因为考虑到水源热泵回灌问题,随地下水下降水量不足及由此引起地面沉降问题,还有国家政策不提倡水源热泵,建议不采用水源热泵而采用土壤源供热制冷,供热不足部分以集中供热作为补充,制冷不足部分用冷却塔补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热、夏季采用热回收热泵提供,春秋两季采用燃气锅炉提供热水。本方案提供最大限度供热、制冷及生活热水保障,打造唐山市顶级绿色环保+时尚豪华小区。
! Q5 S2 g7 N6 v! K% W6 I  
  P9 c8 ^$ Y8 ^' c3 I  3项目基本情况
6 Z2 Q/ R* T7 n. o. \+ o) d  # b" O% ?+ v. d3 b7 l& Q* `  Z
  3.1项目要求:B、D区室内系统为地板供热+风机盘管系统,要求冬季供热,夏季制冷,并且提供24小时生活热水供应。" `9 i3 H' m, x( {& a
  9 B$ b% D. i# J1 S, m
  3.2基本参数及计算基准
& S! V% |; z2 a  
# o& F; o; \9 K3 S, q& q7 T  3.2.1别墅:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.2高层楼:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.3综合服务楼:采暖热指标为45W/m2,制冷冷指标为100W/m2;3.2.4土壤原始平均温度:13℃左右;3.2.5夏季平均单孔换热量60W/m;冬季平均单孔换热量40W/m;3.2.6生活热水设计参数:按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,热水温度取50℃。
1 n. I7 r2 S& B0 S+ a0 u  
8 m' R( \, e! b" \  F8 B  4B、D区具体方案- [" t2 a( W3 m  v8 c4 z
  # P$ ?' d4 \( U
  4.1B、D区为一个整体,共用一个热力站,都统一考虑。分3系统:夏季制冷系统、冬季供热系统及生活热水系统。制冷、供热采用地源热泵,地源冷负荷不足时用冷却塔补充,地源热负荷不足时用集中供热回水补充。土壤热源以冷量为准,热量比冷量多的部分,由集中供热一次回水的热量进行补充,达到一年内土壤冷热量的总体平衡。生活热力系统冬季采用集中供热回水加热;夏季采用可回收式热泵的冷凝水加热,附以燃气炉补充加热;春、秋采用燃气炉加热。几种热源可互为备用,确保供热制冷的安全稳定。; [$ H  s* w% J, z: n1 l
  $ V7 h7 S$ l" I2 l
  4.2室内系统; E( T0 G8 @9 _( {6 M: Q" o
  / m0 b& i1 }9 P/ \
  4.2.1高、低分区:由于最高建筑为22层住宅楼,所以室内系统分为高、低2个区,1~11层为低区,建筑面积为92141.69平方米;12~22层为高区,建筑面积为24401.78平方米。高、低区冷、热负荷计算表见下表;由于有12层楼房,12层不分区,所以低区定压按12层计算,定压压力设为0.4MPa。高区定压按22层计算,定压压力设为0.7MPa。8 z$ j6 C% p5 I
  
4 {3 b* |; H7 P) ^7 P  4.2.2室内冬季采暖采用地板供热,夏季制冷采用风机盘管系统,供热与制冷的切换在室内进行。
/ s- e& d# w; D" t' w  & f* m+ r7 Z: j% ~3 A- x0 z
  4.2.3室内热水系统按11层分高低区,与上水系统一起布置,入户装置与上水入户装置放入一个入户井中,热水进水管和回水管各加一块热水表,2块表计数差为该户用水量。7 Y: A$ F( w+ b# V9 Z
  
$ J0 W# d! q1 S5 H, L% b  4.3室外管网4.3.1室外管网对应室内系统也分高、低区2个系统。低区中的B区别墅区单独引入机房,B、D区的高层1~11层单独引入机房,低区在机房内设集、分水器,有利在机房内进行调节。
4 d. l+ {/ l1 ~8 ?% l7 g  
- O) e4 P* p( i% C, e  4.3.2为节省资金投入室外管网制冷、供热用同一管网,会造成冬季采暖运行严重失调。制冷时:别墅冷负荷100W,高层冷负荷100W,温差5℃。供热时:别墅热负荷40W,高层热负荷40W,温差10℃。冬季运行阻力太小,不平衡率太大,会造成庭院管网的严重失调。采用措施是在制冷入户小室的回水管上加旁通(如下图),供热时开启旁通阀,关闭制冷回水阀,使供暖时管网阻力达到平衡。
; J$ x/ q; `5 p2 _' Z1 h  : \9 N4 W% ~5 e" ?0 j
  4.3.3采用土壤源热泵:按单井120m计算,共布置了661口井,井径φ150,井间距4.5m,单U埋管。冷负荷估算:661×60×120=4759kW;热负荷估算:661×40×120=3173kW。% @9 u( }% L/ h4 x; q9 K  X/ w
  5 r- ^# F" C) ^- z0 z2 L( t
  4.3.4生活热水管网:生活热水管网分高、低2个区,都设循环回水管,主管线沿供热二次网布置,各楼的生活热水入户管线接至给定的上水入户井中。8 R# f0 P9 I  [# D- m
  8 Z" t3 Y8 m" g8 ]
  4.3.5供热制冷、生活水高低分区共8根直埋管线水平布置,并有足够的沟宽。
: n( t- q; M) Y* b! d  * P4 k4 G& ]& y+ N5 D  [2 A
  4.4机房4.4.1设2个独立机房,一个热泵主机房及一个燃气真空炉机房。燃气真空炉机房内不设动力设备,只用管道与主机房相联。* D, o- Y) B! [  G  Q$ q
  
2 J- X0 p! y+ c7 |, v; n+ t- s  4.4.2燃气真空炉机房内安装一台1400kW(2吨)真空燃气锅炉,型号:SV-13005G-H·W。按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,冷水温度取10℃,热水温度取60℃。每天需要177t热水,考虑晚上集中6个小时连续使用,热水流量为30t/h,温差为50℃,热负荷为1380kW。燃气用量为160m3/h。
; ^) z7 L% l. e5 C) e  
$ D/ T0 {) h$ d  4.4.3热泵主机房4.4.3.1低区:冷负荷为6877kW,热负荷3685kW,土壤源可提供4759kW的冷量,冷却塔需提供2117kW的冷量。: E; n7 `% ^, M* n
  3 h' ^/ K9 E( Q
  所以可以选取型号为KCWF2620BR土壤源热泵3台,制冷量2190kW,输入功率387kW;制热量为2330kW,输入功率492kW。2台采用土壤源热泵,1台机组代热回收装置,热回收功率657kW,同时采用冷却塔冷却。
+ G5 C$ T% l; w  
% f7 A- K7 r8 d  4.4.3.2高区:冷负荷为1466kW,热负荷988kW,制冷时需使用冷却塔。所以可以选取型号为KCWF2410BR土壤源热泵2台,代热回收装置,热回收功率434kW。制冷量1448kW,输入功率262kW,制热量为1555kW,输入功330kW。
; ~- e" _, y4 q: Q7 S6 r3 T: @  
- O# Y. h7 O2 S4 Z  L" j' c, I  4.4.3.3土壤冷热量的平衡:$ Y4 R+ s" P" G
  
) m0 L: D: W$ g& Z- |/ ]  夏季放入土壤热量:4759kW×90×12×3600/109=18503GJ?+ L. {/ V  \% I3 b0 |
  7 h5 k3 k* V. D. F9 s- k
  生活热水回收热量:1380kW×90×6×3600/109=2683GJ冬季取自土壤热量:3173kW×136×24×3600/109=37284GJ土壤可取出热量比取出的冷量大21464GJ,为达到冷热负荷的平衡,冬季需用集中供热补充21464GJ。- v  E: c9 T0 S0 r6 l; Y
  " S( ]* Z! H- @/ E( {
  4.4.3.4热力站总用电负荷:2000kW。
: [/ {- u, e" n3 a% A; z" C  
8 F) j4 s0 B6 r* q+ }  5总结及结论土壤源热泵的优点是:热源稳定,可以冬季供热夏季制冷,特别是在夏季制冷时运行费用较低,有明显优势;缺点是:打井占地面积大,初投资大。集中供热的优点是:热源稳定,初投资和运行费用较低,有明显优势;缺点是:只能冬季供热不能夏季制冷,集中供热热源紧张。天然气的优点是:春秋及夏季气量充裕,运行费用适中;缺点是:冬季用气紧张,运行费用比集中供热高。在本工程中,充分综合了这3种供热形式的优势,首先土壤源夏季提供60%的冷负荷,大部分时间由土壤源制冷,从而保证夏季制冷的运行费最低,在极端负荷的情况下由冷却塔补充制冷,由于减少40%的打井数量,可以减小初投资。冬季供热时按夏季放入土壤中的热量为准,在每天的用电低谷时开启土壤源热泵,以达到最低的运行成本,不足部分以集中供热作为补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热,夏季采用热回收热泵提供,春秋二季采用燃气锅炉提供热水,这样生活热水的运行成本亦可以达到最低。本项目在节省初投资,保证土壤源冷热平衡情况下,使运行费用最低,这充分体现运用多种能源及节能技术进行供热制冷的综合优势。. |" _/ m) [6 d7 |6 u+ v+ L
  
* A! V1 P, n6 S. e4 _" i  我国随着城市建设的快速发展、人民生活水平的不断提高,人们对居住环境要求越来越高,形成了冬季南方采暖夏季北方空调的局面。但能源储量日益减少,节能减排工作已日趋紧迫,而热泵技术的应用,可使企业在供热领域开拓新的空间,实现节能减排的目的。正因此,热泵的运用在当前迅猛发展。& @7 d. s) v  R0 F. p: ?8 m! S5 }
  % A' E. ^8 p# X6 T- i
  笔者认为热泵、集中供热及燃气供热各有自己的优势和局限性,在工程实践中应当发挥它们的综合优势,达到投资省、运行费用低,安全可靠地为建筑物供热制冷的目的。下面笔者对一个工程实例加以剖析。4 M; b4 u; z+ W2 P3 N  I  S2 _* V9 G
  % W4 M1 S9 |& u  D% u# o' o
  1工程背景某
/ Z6 C! `! A. c4 t- [- L  
% w( q" i, W8 W9 h' j2 J! W  小区位于唐山市高新技术开发区,地理位置优越,环境优雅,该项目共分A、B、C、D四个区,其中A、C区为普通高层公寓,采用集中供热,共设一个热力站,只提供冬季供暖。B、D区为豪华别墅和跃层高级公寓,为唐山市顶级豪华小区,要求进行冬季供热、夏季制冷、一年四季24小时提供生活热水。2 Q5 y2 L; j+ ]: t: a' }
  
0 r1 U0 p: [% `2 H% b  2方案制定该: u$ Y+ `& g7 {$ y3 M+ ^+ @
  ! s& {) Y$ n' Q
  小区B、D区定位于高端建筑市场,需提供优质的供热、制冷及生活热水服务,为此,确定可再生能源供热、制冷方案。可再生能源应用属国家重点推广应用技术,具有环保、节能、可持续利用的特点。该项目供热(制冷)方案:因为考虑到水源热泵回灌问题,随地下水下降水量不足及由此引起地面沉降问题,还有国家政策不提倡水源热泵,建议不采用水源热泵而采用土壤源供热制冷,供热不足部分以集中供热作为补充,制冷不足部分用冷却塔补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热、夏季采用热回收热泵提供,春秋两季采用燃气锅炉提供热水。本方案提供最大限度供热、制冷及生活热水保障,打造唐山市顶级绿色环保+时尚豪华小区。
  \/ R( R0 e* }  3 I" w( O, Y7 i2 p* T4 I: y
  3项目基本情况
2 @( n6 E$ \, f$ n5 K9 |5 o( D  
# z3 X, e' G0 C. `$ V, w( h  3.1项目要求:B、D区室内系统为地板供热+风机盘管系统,要求冬季供热,夏季制冷,并且提供24小时生活热水供应。
/ o. k0 K3 c4 s' S3 l  : E1 I' [& z/ E3 p2 k4 P
  3.2基本参数及计算基准! w1 o5 ?1 C  u1 M7 k1 K  r
  7 G1 @: y/ @( h% f: F" n% X$ g8 w
  3.2.1别墅:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.2高层楼:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.3综合服务楼:采暖热指标为45W/m2,制冷冷指标为100W/m2;3.2.4土壤原始平均温度:13℃左右;3.2.5夏季平均单孔换热量60W/m;冬季平均单孔换热量40W/m;3.2.6生活热水设计参数:按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,热水温度取50℃。- Q5 E  V8 r6 S+ [5 x
  
  C, g0 g/ V% o4 h' F8 _# [; B" n  @  4B、D区具体方案
* J" d( ]) {  L) w8 k& }7 Q. S# V  0 i; M8 a/ h2 t* X
  4.1B、D区为一个整体,共用一个热力站,都统一考虑。分3系统:夏季制冷系统、冬季供热系统及生活热水系统。制冷、供热采用地源热泵,地源冷负荷不足时用冷却塔补充,地源热负荷不足时用集中供热回水补充。土壤热源以冷量为准,热量比冷量多的部分,由集中供热一次回水的热量进行补充,达到一年内土壤冷热量的总体平衡。生活热力系统冬季采用集中供热回水加热;夏季采用可回收式热泵的冷凝水加热,附以燃气炉补充加热;春、秋采用燃气炉加热。几种热源可互为备用,确保供热制冷的安全稳定。9 b0 O# |; G5 K* T" E
  3 C' G5 q  X! F) p6 z5 k
  4.2室内系统
! y: n- C: J) w& g( j+ }  5 T, i. G6 L% V1 V4 t7 s5 T
  4.2.1高、低分区:由于最高建筑为22层住宅楼,所以室内系统分为高、低2个区,1~11层为低区,建筑面积为92141.69平方米;12~22层为高区,建筑面积为24401.78平方米。高、低区冷、热负荷计算表见下表;由于有12层楼房,12层不分区,所以低区定压按12层计算,定压压力设为0.4MPa。高区定压按22层计算,定压压力设为0.7MPa。
! C# |+ \5 u: _( X4 p+ C% i2 Z  . n6 d2 i, u: e* a! X: ~) W) ]
  4.2.2室内冬季采暖采用地板供热,夏季制冷采用风机盘管系统,供热与制冷的切换在室内进行。" P( t& {8 g; R( }4 F# w
  
. n) j/ u" j# }4 N  4.2.3室内热水系统按11层分高低区,与上水系统一起布置,入户装置与上水入户装置放入一个入户井中,热水进水管和回水管各加一块热水表,2块表计数差为该户用水量。
3 R$ p! I9 Z% H  W  |. }  6 g* M' O, k4 T) |
  4.3室外管网4.3.1室外管网对应室内系统也分高、低区2个系统。低区中的B区别墅区单独引入机房,B、D区的高层1~11层单独引入机房,低区在机房内设集、分水器,有利在机房内进行调节。6 K- K* S# l/ h) B" z
  
4 [) J5 s3 O0 d; ^+ K  4.3.2为节省资金投入室外管网制冷、供热用同一管网,会造成冬季采暖运行严重失调。制冷时:别墅冷负荷100W,高层冷负荷100W,温差5℃。供热时:别墅热负荷40W,高层热负荷40W,温差10℃。冬季运行阻力太小,不平衡率太大,会造成庭院管网的严重失调。采用措施是在制冷入户小室的回水管上加旁通(如下图),供热时开启旁通阀,关闭制冷回水阀,使供暖时管网阻力达到平衡。
/ S. s9 x: t, H) |0 \0 J& s6 v  . H; ]1 V9 x7 s
  4.3.3采用土壤源热泵:按单井120m计算,共布置了661口井,井径φ150,井间距4.5m,单U埋管。冷负荷估算:661×60×120=4759kW;热负荷估算:661×40×120=3173kW。7 p3 j" E+ m  v4 d' `
  ' b( q0 h/ |7 n
  4.3.4生活热水管网:生活热水管网分高、低2个区,都设循环回水管,主管线沿供热二次网布置,各楼的生活热水入户管线接至给定的上水入户井中。9 w  r' ]$ M& Y4 B6 }6 i" |+ y
  
& ^4 [, G) a' m. R& S  4.3.5供热制冷、生活水高低分区共8根直埋管线水平布置,并有足够的沟宽。
$ E' O, d1 r" C4 I) E2 Y( U' o  , ~: {7 \" x' n1 N
  4.4机房4.4.1设2个独立机房,一个热泵主机房及一个燃气真空炉机房。燃气真空炉机房内不设动力设备,只用管道与主机房相联。
" c4 x; z- `& S  ) X3 {% u( ~' O5 M" g# h& D
  4.4.2燃气真空炉机房内安装一台1400kW(2吨)真空燃气锅炉,型号:SV-13005G-H·W。按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,冷水温度取10℃,热水温度取60℃。每天需要177t热水,考虑晚上集中6个小时连续使用,热水流量为30t/h,温差为50℃,热负荷为1380kW。燃气用量为160m3/h。+ J  o8 Q% m. k+ a" Z" S6 k
  
- K  |0 o; g( ]9 A4 u; t  4.4.3热泵主机房4.4.3.1低区:冷负荷为6877kW,热负荷3685kW,土壤源可提供4759kW的冷量,冷却塔需提供2117kW的冷量。, w3 r" t- P. E& I5 v* ]$ h
  4 t9 a7 a( ]* ^+ q% R0 [$ Q
  所以可以选取型号为KCWF2620BR土壤源热泵3台,制冷量2190kW,输入功率387kW;制热量为2330kW,输入功率492kW。2台采用土壤源热泵,1台机组代热回收装置,热回收功率657kW,同时采用冷却塔冷却。& _- z* ?+ z4 C( `) D4 f
  
0 Y6 }* k* C1 d4 p0 o  4.4.3.2高区:冷负荷为1466kW,热负荷988kW,制冷时需使用冷却塔。所以可以选取型号为KCWF2410BR土壤源热泵2台,代热回收装置,热回收功率434kW。制冷量1448kW,输入功率262kW,制热量为1555kW,输入功330kW。
6 J( b: V2 J6 T! H  
1 z  s4 h' S2 a  4.4.3.3土壤冷热量的平衡:, Z- y. ?# J. S) X0 n
  
$ R5 t, B% A4 R  夏季放入土壤热量:4759kW×90×12×3600/109=18503GJ?8 ], f4 t2 E9 W3 M- e
  
; U2 b+ L: m. h* X  ^( J  生活热水回收热量:1380kW×90×6×3600/109=2683GJ冬季取自土壤热量:3173kW×136×24×3600/109=37284GJ土壤可取出热量比取出的冷量大21464GJ,为达到冷热负荷的平衡,冬季需用集中供热补充21464GJ。
; ^3 \5 Q$ x; |- t  
; A. m( }2 j) s  4.4.3.4热力站总用电负荷:2000kW。
5 r7 d) E; Q0 E& T& e# j6 n0 e  ! D: ?$ `5 |" V; F" \. y9 a
  5总结及结论土壤源热泵的优点是:热源稳定,可以冬季供热夏季制冷,特别是在夏季制冷时运行费用较低,有明显优势;缺点是:打井占地面积大,初投资大。集中供热的优点是:热源稳定,初投资和运行费用较低,有明显优势;缺点是:只能冬季供热不能夏季制冷,集中供热热源紧张。天然气的优点是:春秋及夏季气量充裕,运行费用适中;缺点是:冬季用气紧张,运行费用比集中供热高。在本工程中,充分综合了这3种供热形式的优势,首先土壤源夏季提供60%的冷负荷,大部分时间由土壤源制冷,从而保证夏季制冷的运行费最低,在极端负荷的情况下由冷却塔补充制冷,由于减少40%的打井数量,可以减小初投资。冬季供热时按夏季放入土壤中的热量为准,在每天的用电低谷时开启土壤源热泵,以达到最低的运行成本,不足部分以集中供热作为补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热,夏季采用热回收热泵提供,春秋二季采用燃气锅炉提供热水,这样生活热水的运行成本亦可以达到最低。本项目在节省初投资,保证土壤源冷热平衡情况下,使运行费用最低,这充分体现运用多种能源及节能技术进行供热制冷的综合优势。
您需要登录后才可以回帖 登录 | 注册

《压缩机》杂志

Archiver|手机版|中国制冷网论坛- ( 陕ICP备12001613号-8 )  

GMT+8, 2024-9-28 08:32 , Processed in 0.131248 second(s), 22 queries .

回顶部