设为首页收藏本站
搜索
查看: 4499|回复: 0
打印 上一主题 下一主题

分析节能技术进行供热制冷的优势

[复制链接]

85

主题

0

好友

87

积分

管理员

Rank: 9Rank: 9Rank: 9

金币
0
积分
87
精华
0
主题
85
帖子
87
跳转到指定楼层
1#
发表于 2014-4-17 06:53:00 |只看该作者 |倒序浏览
  我国随着城市建设的快速发展、人民生活水平的不断提高,人们对居住环境要求越来越高,形成了冬季南方采暖夏季北方空调的局面。但能源储量日益减少,节能减排工作已日趋紧迫,而热泵技术的应用,可使企业在供热领域开拓新的空间,实现节能减排的目的。正因此,热泵的运用在当前迅猛发展。
6 u+ l/ Z' z. }7 r( F  
' L6 U4 Q& y) r2 @6 P  笔者认为热泵、集中供热及燃气供热各有自己的优势和局限性,在工程实践中应当发挥它们的综合优势,达到投资省、运行费用低,安全可靠地为建筑物供热制冷的目的。下面笔者对一个工程实例加以剖析。- ^2 _- m; o  B5 I% H, [$ N8 m5 P2 |- g
1 z$ w* T3 W( W+ W$ P& G
  
. ]* H2 t  {9 V" L) q/ e9 k: J  1工程背景某
) T8 J1 B  ?) o# B  
' J: j6 L- q1 p: i% {( W  小区位于唐山市高新技术开发区,地理位置优越,环境优雅,该项目共分A、B、C、D四个区,其中A、C区为普通高层公寓,采用集中供热,共设一个热力站,只提供冬季供暖。B、D区为豪华别墅和跃层高级公寓,为唐山市顶级豪华小区,要求进行冬季供热、夏季制冷、一年四季24小时提供生活热水。
+ Z; z4 U: h: H  
- a6 ~4 s1 ^9 s3 ^& g8 b  2方案制定该
. ^2 W$ N9 d' b) n% s9 b, v  : S6 x7 Y# s7 x5 g
  小区B、D区定位于高端建筑市场,需提供优质的供热、制冷及生活热水服务,为此,确定可再生能源供热、制冷方案。可再生能源应用属国家重点推广应用技术,具有环保、节能、可持续利用的特点。该项目供热(制冷)方案:因为考虑到水源热泵回灌问题,随地下水下降水量不足及由此引起地面沉降问题,还有国家政策不提倡水源热泵,建议不采用水源热泵而采用土壤源供热制冷,供热不足部分以集中供热作为补充,制冷不足部分用冷却塔补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热、夏季采用热回收热泵提供,春秋两季采用燃气锅炉提供热水。本方案提供最大限度供热、制冷及生活热水保障,打造唐山市顶级绿色环保+时尚豪华小区。- F9 p: a1 ^7 |  q9 c5 M) |( B
  0 Y) x! f: y, T  A/ t5 _
  3项目基本情况- O3 _8 m7 Z7 w' w- J- F3 S
  $ l4 y$ u; l3 f: B
  3.1项目要求:B、D区室内系统为地板供热+风机盘管系统,要求冬季供热,夏季制冷,并且提供24小时生活热水供应。$ ]% E, y/ A8 h' ]* Y0 H
  
6 i( r& s. q6 h* k  3.2基本参数及计算基准
* s3 Y  w+ r; A2 u+ {9 N+ g& P  
$ ^/ ?- t( ?5 g' a$ ^' `  3.2.1别墅:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.2高层楼:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.3综合服务楼:采暖热指标为45W/m2,制冷冷指标为100W/m2;3.2.4土壤原始平均温度:13℃左右;3.2.5夏季平均单孔换热量60W/m;冬季平均单孔换热量40W/m;3.2.6生活热水设计参数:按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,热水温度取50℃。7 c3 o1 g8 n5 k
  * p) L( m5 Z% p
  4B、D区具体方案+ U$ V! |- c9 z  n0 {
  
5 Z) o* ^6 ~2 @0 k+ A  4.1B、D区为一个整体,共用一个热力站,都统一考虑。分3系统:夏季制冷系统、冬季供热系统及生活热水系统。制冷、供热采用地源热泵,地源冷负荷不足时用冷却塔补充,地源热负荷不足时用集中供热回水补充。土壤热源以冷量为准,热量比冷量多的部分,由集中供热一次回水的热量进行补充,达到一年内土壤冷热量的总体平衡。生活热力系统冬季采用集中供热回水加热;夏季采用可回收式热泵的冷凝水加热,附以燃气炉补充加热;春、秋采用燃气炉加热。几种热源可互为备用,确保供热制冷的安全稳定。
! C0 j% v  f+ z6 b  
- c2 [0 _( R$ J9 u3 _  4.2室内系统
. \/ K& P( W4 e" _7 H' p  
% f, K, u* Z' R7 N  q' d  4.2.1高、低分区:由于最高建筑为22层住宅楼,所以室内系统分为高、低2个区,1~11层为低区,建筑面积为92141.69平方米;12~22层为高区,建筑面积为24401.78平方米。高、低区冷、热负荷计算表见下表;由于有12层楼房,12层不分区,所以低区定压按12层计算,定压压力设为0.4MPa。高区定压按22层计算,定压压力设为0.7MPa。
6 ~' X: p; i( [0 ?: U7 v/ }5 J  
+ T6 ^' T9 R8 w  4.2.2室内冬季采暖采用地板供热,夏季制冷采用风机盘管系统,供热与制冷的切换在室内进行。- a, t0 w$ U$ g/ s& A
  ' V; N  T- e  G. f" o4 @7 c# o
  4.2.3室内热水系统按11层分高低区,与上水系统一起布置,入户装置与上水入户装置放入一个入户井中,热水进水管和回水管各加一块热水表,2块表计数差为该户用水量。" ~% D* S! v" J& z9 q  H
  
/ k3 s# ?* b" k, z+ m4 g7 Y  4.3室外管网4.3.1室外管网对应室内系统也分高、低区2个系统。低区中的B区别墅区单独引入机房,B、D区的高层1~11层单独引入机房,低区在机房内设集、分水器,有利在机房内进行调节。1 R& X0 e/ k9 f' o( A9 c# J
  
2 w6 u" ^9 N3 L4 S2 N7 K  4.3.2为节省资金投入室外管网制冷、供热用同一管网,会造成冬季采暖运行严重失调。制冷时:别墅冷负荷100W,高层冷负荷100W,温差5℃。供热时:别墅热负荷40W,高层热负荷40W,温差10℃。冬季运行阻力太小,不平衡率太大,会造成庭院管网的严重失调。采用措施是在制冷入户小室的回水管上加旁通(如下图),供热时开启旁通阀,关闭制冷回水阀,使供暖时管网阻力达到平衡。
; W+ g4 |( j4 O! ?7 p  & _! p/ d6 p; t' V1 |
  4.3.3采用土壤源热泵:按单井120m计算,共布置了661口井,井径φ150,井间距4.5m,单U埋管。冷负荷估算:661×60×120=4759kW;热负荷估算:661×40×120=3173kW。
4 g$ t' @  x4 Q' G1 t) w0 V7 N$ Z; g  
, G5 o; n* r  K, k/ z4 {- l  4.3.4生活热水管网:生活热水管网分高、低2个区,都设循环回水管,主管线沿供热二次网布置,各楼的生活热水入户管线接至给定的上水入户井中。3 `1 A5 w8 Z% V0 E- k) Y" l8 d3 _
  
( @, X2 V" i: D& u3 L  4.3.5供热制冷、生活水高低分区共8根直埋管线水平布置,并有足够的沟宽。, @) D! ?$ {6 i) |/ [! _2 o4 l
  0 S4 o: s8 L: \  Q# W/ Y
  4.4机房4.4.1设2个独立机房,一个热泵主机房及一个燃气真空炉机房。燃气真空炉机房内不设动力设备,只用管道与主机房相联。3 U) W- T8 _) f* |7 U" g  c! s
    I4 F+ P3 n% |7 g
  4.4.2燃气真空炉机房内安装一台1400kW(2吨)真空燃气锅炉,型号:SV-13005G-H·W。按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,冷水温度取10℃,热水温度取60℃。每天需要177t热水,考虑晚上集中6个小时连续使用,热水流量为30t/h,温差为50℃,热负荷为1380kW。燃气用量为160m3/h。
/ u0 W5 _! h) a2 J. {! f  
; m0 y5 N$ V1 O+ C0 P  4.4.3热泵主机房4.4.3.1低区:冷负荷为6877kW,热负荷3685kW,土壤源可提供4759kW的冷量,冷却塔需提供2117kW的冷量。
& K0 x* p. x$ ^, y+ I' {  / A0 v  @0 f2 [1 F; R
  所以可以选取型号为KCWF2620BR土壤源热泵3台,制冷量2190kW,输入功率387kW;制热量为2330kW,输入功率492kW。2台采用土壤源热泵,1台机组代热回收装置,热回收功率657kW,同时采用冷却塔冷却。
/ l3 _; Y; v$ f' x  {  ! y3 ^; v; ]( I1 o! s6 l
  4.4.3.2高区:冷负荷为1466kW,热负荷988kW,制冷时需使用冷却塔。所以可以选取型号为KCWF2410BR土壤源热泵2台,代热回收装置,热回收功率434kW。制冷量1448kW,输入功率262kW,制热量为1555kW,输入功330kW。+ H+ P3 \3 H+ L  t- b: H
  $ G7 r' p; m" s- R  L. `
  4.4.3.3土壤冷热量的平衡:2 ^; q9 @$ O- r- E" C* R) |! q/ L
  ( a; u) `1 ?0 l" i3 D- w, h
  夏季放入土壤热量:4759kW×90×12×3600/109=18503GJ?2 [$ }# y& @1 `4 R) s5 b' s' I
  * B) m0 g- W! A/ G' |  i; U8 R, V; o
  生活热水回收热量:1380kW×90×6×3600/109=2683GJ冬季取自土壤热量:3173kW×136×24×3600/109=37284GJ土壤可取出热量比取出的冷量大21464GJ,为达到冷热负荷的平衡,冬季需用集中供热补充21464GJ。& x6 d5 b4 a2 d: n0 w% N
  
& R5 j  n0 D9 ]2 ~- O# V6 J8 [; u- ~  4.4.3.4热力站总用电负荷:2000kW。
9 t6 V1 R3 ]: T$ Z* C5 h  2 `/ O/ T6 ~% @: _
  5总结及结论土壤源热泵的优点是:热源稳定,可以冬季供热夏季制冷,特别是在夏季制冷时运行费用较低,有明显优势;缺点是:打井占地面积大,初投资大。集中供热的优点是:热源稳定,初投资和运行费用较低,有明显优势;缺点是:只能冬季供热不能夏季制冷,集中供热热源紧张。天然气的优点是:春秋及夏季气量充裕,运行费用适中;缺点是:冬季用气紧张,运行费用比集中供热高。在本工程中,充分综合了这3种供热形式的优势,首先土壤源夏季提供60%的冷负荷,大部分时间由土壤源制冷,从而保证夏季制冷的运行费最低,在极端负荷的情况下由冷却塔补充制冷,由于减少40%的打井数量,可以减小初投资。冬季供热时按夏季放入土壤中的热量为准,在每天的用电低谷时开启土壤源热泵,以达到最低的运行成本,不足部分以集中供热作为补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热,夏季采用热回收热泵提供,春秋二季采用燃气锅炉提供热水,这样生活热水的运行成本亦可以达到最低。本项目在节省初投资,保证土壤源冷热平衡情况下,使运行费用最低,这充分体现运用多种能源及节能技术进行供热制冷的综合优势。0 S6 s" ]$ i9 d4 O/ L( A
  9 C3 w! o7 |' Q3 `  h) d# @
  我国随着城市建设的快速发展、人民生活水平的不断提高,人们对居住环境要求越来越高,形成了冬季南方采暖夏季北方空调的局面。但能源储量日益减少,节能减排工作已日趋紧迫,而热泵技术的应用,可使企业在供热领域开拓新的空间,实现节能减排的目的。正因此,热泵的运用在当前迅猛发展。
& ~0 T: f1 V- p  
% z! t8 U, }% m8 M9 n8 [  笔者认为热泵、集中供热及燃气供热各有自己的优势和局限性,在工程实践中应当发挥它们的综合优势,达到投资省、运行费用低,安全可靠地为建筑物供热制冷的目的。下面笔者对一个工程实例加以剖析。% P$ {0 j  D, `; l
  8 M' c! o) T8 E& n9 }0 ~* o
  1工程背景某9 K2 m7 r" ~2 H2 m
  3 g- l9 ^/ C$ D* p; {* k
  小区位于唐山市高新技术开发区,地理位置优越,环境优雅,该项目共分A、B、C、D四个区,其中A、C区为普通高层公寓,采用集中供热,共设一个热力站,只提供冬季供暖。B、D区为豪华别墅和跃层高级公寓,为唐山市顶级豪华小区,要求进行冬季供热、夏季制冷、一年四季24小时提供生活热水。. s7 F% s/ R0 {
  
* ^/ v& K1 ?# b, S+ O1 ~0 w' w  2方案制定该
& M7 f) q# L: n& F- Y  + W1 y/ ?( p* d; M9 S5 Z1 R
  小区B、D区定位于高端建筑市场,需提供优质的供热、制冷及生活热水服务,为此,确定可再生能源供热、制冷方案。可再生能源应用属国家重点推广应用技术,具有环保、节能、可持续利用的特点。该项目供热(制冷)方案:因为考虑到水源热泵回灌问题,随地下水下降水量不足及由此引起地面沉降问题,还有国家政策不提倡水源热泵,建议不采用水源热泵而采用土壤源供热制冷,供热不足部分以集中供热作为补充,制冷不足部分用冷却塔补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热、夏季采用热回收热泵提供,春秋两季采用燃气锅炉提供热水。本方案提供最大限度供热、制冷及生活热水保障,打造唐山市顶级绿色环保+时尚豪华小区。) V1 @: ^& ?2 ^+ q& `4 w
  * C& Q9 x8 M9 X7 ~! }4 q  }
  3项目基本情况& h6 Q! z( X4 K
  
/ _0 O  j9 f- v, W" V( B  3.1项目要求:B、D区室内系统为地板供热+风机盘管系统,要求冬季供热,夏季制冷,并且提供24小时生活热水供应。
% j6 h$ z4 _; ?  
9 [# u$ N9 o; G; I' K- C  3.2基本参数及计算基准* E& R1 S$ m% H; L2 Q6 \
  ! F5 [& `- e' u. n' P" X0 H8 @
  3.2.1别墅:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.2高层楼:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.3综合服务楼:采暖热指标为45W/m2,制冷冷指标为100W/m2;3.2.4土壤原始平均温度:13℃左右;3.2.5夏季平均单孔换热量60W/m;冬季平均单孔换热量40W/m;3.2.6生活热水设计参数:按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,热水温度取50℃。6 b4 g6 P0 d' _' }) k
  
6 X! V+ }* X! ], g; {  4B、D区具体方案. f3 P2 F7 i7 s- M+ {8 Z
  
* s6 K# J; }- ^& V  4.1B、D区为一个整体,共用一个热力站,都统一考虑。分3系统:夏季制冷系统、冬季供热系统及生活热水系统。制冷、供热采用地源热泵,地源冷负荷不足时用冷却塔补充,地源热负荷不足时用集中供热回水补充。土壤热源以冷量为准,热量比冷量多的部分,由集中供热一次回水的热量进行补充,达到一年内土壤冷热量的总体平衡。生活热力系统冬季采用集中供热回水加热;夏季采用可回收式热泵的冷凝水加热,附以燃气炉补充加热;春、秋采用燃气炉加热。几种热源可互为备用,确保供热制冷的安全稳定。  x% D4 I( E+ W
  4 i2 ]  t- i: b0 n( M
  4.2室内系统& s0 h) G6 l" c2 q% h
  6 [; a+ H; ]5 v; m
  4.2.1高、低分区:由于最高建筑为22层住宅楼,所以室内系统分为高、低2个区,1~11层为低区,建筑面积为92141.69平方米;12~22层为高区,建筑面积为24401.78平方米。高、低区冷、热负荷计算表见下表;由于有12层楼房,12层不分区,所以低区定压按12层计算,定压压力设为0.4MPa。高区定压按22层计算,定压压力设为0.7MPa。
. T5 E1 v9 Y7 b6 ^  
, u. A# N0 r# O$ `) {+ I  4.2.2室内冬季采暖采用地板供热,夏季制冷采用风机盘管系统,供热与制冷的切换在室内进行。
6 a9 P3 b% H' d- f* y% {  # v+ |/ g, W1 i$ v. |& ]
  4.2.3室内热水系统按11层分高低区,与上水系统一起布置,入户装置与上水入户装置放入一个入户井中,热水进水管和回水管各加一块热水表,2块表计数差为该户用水量。
! H* Z: e9 d" e0 E" F  3 J7 _" W8 D3 A: {7 a1 C; C
  4.3室外管网4.3.1室外管网对应室内系统也分高、低区2个系统。低区中的B区别墅区单独引入机房,B、D区的高层1~11层单独引入机房,低区在机房内设集、分水器,有利在机房内进行调节。
; |2 j/ e: z) g) f: ]7 x  
, m. N( P4 n! ]. X  4.3.2为节省资金投入室外管网制冷、供热用同一管网,会造成冬季采暖运行严重失调。制冷时:别墅冷负荷100W,高层冷负荷100W,温差5℃。供热时:别墅热负荷40W,高层热负荷40W,温差10℃。冬季运行阻力太小,不平衡率太大,会造成庭院管网的严重失调。采用措施是在制冷入户小室的回水管上加旁通(如下图),供热时开启旁通阀,关闭制冷回水阀,使供暖时管网阻力达到平衡。
! ?% m' {4 j1 }2 [4 @  3 W# ~. L% t! `; r" C0 V. L
  4.3.3采用土壤源热泵:按单井120m计算,共布置了661口井,井径φ150,井间距4.5m,单U埋管。冷负荷估算:661×60×120=4759kW;热负荷估算:661×40×120=3173kW。5 B$ f# R3 A7 n$ l1 w
  $ T  D4 d& W2 M* Z
  4.3.4生活热水管网:生活热水管网分高、低2个区,都设循环回水管,主管线沿供热二次网布置,各楼的生活热水入户管线接至给定的上水入户井中。8 r/ h  G6 t  W( x. s8 q' ?7 @
  
( l2 W+ s8 D& `4 u1 D  4.3.5供热制冷、生活水高低分区共8根直埋管线水平布置,并有足够的沟宽。
" h) K0 w3 y! N: }+ @" l5 \& C  
3 p" a$ f' ?0 u  R6 K  h  4.4机房4.4.1设2个独立机房,一个热泵主机房及一个燃气真空炉机房。燃气真空炉机房内不设动力设备,只用管道与主机房相联。' ?" o/ m! Y' M: q
  : ~- `1 j% E5 `: f- b3 _( s4 P
  4.4.2燃气真空炉机房内安装一台1400kW(2吨)真空燃气锅炉,型号:SV-13005G-H·W。按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,冷水温度取10℃,热水温度取60℃。每天需要177t热水,考虑晚上集中6个小时连续使用,热水流量为30t/h,温差为50℃,热负荷为1380kW。燃气用量为160m3/h。1 N- K! J3 I7 B2 i( O5 X+ h
  ' W7 w- P9 s3 e, |0 v
  4.4.3热泵主机房4.4.3.1低区:冷负荷为6877kW,热负荷3685kW,土壤源可提供4759kW的冷量,冷却塔需提供2117kW的冷量。2 n+ h3 a; R$ C8 U6 i
  
' G* |4 P2 I# j: u1 M/ f  所以可以选取型号为KCWF2620BR土壤源热泵3台,制冷量2190kW,输入功率387kW;制热量为2330kW,输入功率492kW。2台采用土壤源热泵,1台机组代热回收装置,热回收功率657kW,同时采用冷却塔冷却。
% }2 z( s) \% c5 h3 ]) I  4 O# l! }! A; \
  4.4.3.2高区:冷负荷为1466kW,热负荷988kW,制冷时需使用冷却塔。所以可以选取型号为KCWF2410BR土壤源热泵2台,代热回收装置,热回收功率434kW。制冷量1448kW,输入功率262kW,制热量为1555kW,输入功330kW。0 A% X: w2 D6 h5 `" q0 D/ E% y9 y
  
0 [  ?) C3 v/ S% v9 b. @0 i- b  4.4.3.3土壤冷热量的平衡:
8 V1 N3 L- O: s% _0 B: ^  
# N7 G% Z9 E# ^. K  夏季放入土壤热量:4759kW×90×12×3600/109=18503GJ?
& E+ T' g: q% P+ v! S- m  , s3 a( |. x/ a3 W) C, b
  生活热水回收热量:1380kW×90×6×3600/109=2683GJ冬季取自土壤热量:3173kW×136×24×3600/109=37284GJ土壤可取出热量比取出的冷量大21464GJ,为达到冷热负荷的平衡,冬季需用集中供热补充21464GJ。) T. s4 w/ Z9 n, w: [" t
  ! e8 @9 K$ j/ R$ u
  4.4.3.4热力站总用电负荷:2000kW。8 S3 S$ |3 s" K5 I# Z- @# S& p
  . }* x- m4 G2 Z9 k0 A7 \" y3 |0 U
  5总结及结论土壤源热泵的优点是:热源稳定,可以冬季供热夏季制冷,特别是在夏季制冷时运行费用较低,有明显优势;缺点是:打井占地面积大,初投资大。集中供热的优点是:热源稳定,初投资和运行费用较低,有明显优势;缺点是:只能冬季供热不能夏季制冷,集中供热热源紧张。天然气的优点是:春秋及夏季气量充裕,运行费用适中;缺点是:冬季用气紧张,运行费用比集中供热高。在本工程中,充分综合了这3种供热形式的优势,首先土壤源夏季提供60%的冷负荷,大部分时间由土壤源制冷,从而保证夏季制冷的运行费最低,在极端负荷的情况下由冷却塔补充制冷,由于减少40%的打井数量,可以减小初投资。冬季供热时按夏季放入土壤中的热量为准,在每天的用电低谷时开启土壤源热泵,以达到最低的运行成本,不足部分以集中供热作为补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热,夏季采用热回收热泵提供,春秋二季采用燃气锅炉提供热水,这样生活热水的运行成本亦可以达到最低。本项目在节省初投资,保证土壤源冷热平衡情况下,使运行费用最低,这充分体现运用多种能源及节能技术进行供热制冷的综合优势。
您需要登录后才可以回帖 登录 | 注册

《压缩机》杂志

Archiver|手机版|中国制冷网论坛- ( 陕ICP备12001613号-8 )  

GMT+8, 2024-11-24 06:35 , Processed in 0.112692 second(s), 22 queries .

回顶部