- 注册时间
- 2013-5-2
- 最后登录
- 2015-1-4
- 在线时间
- 71 小时
- 阅读权限
- 255
- 积分
- 87
- 主题
- 85
- 精华
- 0
- 帖子
- 87
- 金币
- 0
- 积分
- 87
- 精华
- 0
- 主题
- 85
- 帖子
- 87
|
我国随着城市建设的快速发展、人民生活水平的不断提高,人们对居住环境要求越来越高,形成了冬季南方采暖夏季北方空调的局面。但能源储量日益减少,节能减排工作已日趋紧迫,而热泵技术的应用,可使企业在供热领域开拓新的空间,实现节能减排的目的。正因此,热泵的运用在当前迅猛发展。" z8 V* e( W+ {6 U2 A# k2 A
# h+ o' b2 s$ h: b
笔者认为热泵、集中供热及燃气供热各有自己的优势和局限性,在工程实践中应当发挥它们的综合优势,达到投资省、运行费用低,安全可靠地为建筑物供热制冷的目的。下面笔者对一个工程实例加以剖析。
8 D# C/ w2 C( M" u: F# u3 L' [3 q6 M0 S& E0 W) ]5 T: w* i1 @
6 j% H; d* S) B a0 s" X8 r/ E
1工程背景某
- m/ t! E$ E3 F8 G$ n
9 x9 x5 j* X& \6 h/ V 小区位于唐山市高新技术开发区,地理位置优越,环境优雅,该项目共分A、B、C、D四个区,其中A、C区为普通高层公寓,采用集中供热,共设一个热力站,只提供冬季供暖。B、D区为豪华别墅和跃层高级公寓,为唐山市顶级豪华小区,要求进行冬季供热、夏季制冷、一年四季24小时提供生活热水。! g4 J, M4 K$ X% A8 x, [* C
0 G! K: g+ H5 z! K: }% S3 l 2方案制定该
4 W) Q7 Z2 N( c
- ^$ U4 E; U! r( r5 j 小区B、D区定位于高端建筑市场,需提供优质的供热、制冷及生活热水服务,为此,确定可再生能源供热、制冷方案。可再生能源应用属国家重点推广应用技术,具有环保、节能、可持续利用的特点。该项目供热(制冷)方案:因为考虑到水源热泵回灌问题,随地下水下降水量不足及由此引起地面沉降问题,还有国家政策不提倡水源热泵,建议不采用水源热泵而采用土壤源供热制冷,供热不足部分以集中供热作为补充,制冷不足部分用冷却塔补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热、夏季采用热回收热泵提供,春秋两季采用燃气锅炉提供热水。本方案提供最大限度供热、制冷及生活热水保障,打造唐山市顶级绿色环保+时尚豪华小区。 `2 B% ~ F' \6 g9 X
# x/ o4 `6 C. S$ C3 L) `" ?' t/ V9 A 3项目基本情况4 u0 | w7 A. z; [( T8 K
, D' h J( C; I
3.1项目要求:B、D区室内系统为地板供热+风机盘管系统,要求冬季供热,夏季制冷,并且提供24小时生活热水供应。
' j- H1 J3 ~- B( B5 j8 E- s v; S7 Q 5 I" t7 z) F" v# b, ^2 t& E2 | @
3.2基本参数及计算基准
* a' ~ M* h( J5 Q4 h6 _+ a
]# |# f! |5 ~1 Q3 ~$ j 3.2.1别墅:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.2高层楼:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.3综合服务楼:采暖热指标为45W/m2,制冷冷指标为100W/m2;3.2.4土壤原始平均温度:13℃左右;3.2.5夏季平均单孔换热量60W/m;冬季平均单孔换热量40W/m;3.2.6生活热水设计参数:按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,热水温度取50℃。
2 {- X- B6 f% F2 r6 o/ `% m
$ O# |# Y2 ?9 b. Q% O& D6 N: i; s 4B、D区具体方案1 |5 W* ?$ T# G: k
4 \) j( w' ^' C, k/ q5 M" _
4.1B、D区为一个整体,共用一个热力站,都统一考虑。分3系统:夏季制冷系统、冬季供热系统及生活热水系统。制冷、供热采用地源热泵,地源冷负荷不足时用冷却塔补充,地源热负荷不足时用集中供热回水补充。土壤热源以冷量为准,热量比冷量多的部分,由集中供热一次回水的热量进行补充,达到一年内土壤冷热量的总体平衡。生活热力系统冬季采用集中供热回水加热;夏季采用可回收式热泵的冷凝水加热,附以燃气炉补充加热;春、秋采用燃气炉加热。几种热源可互为备用,确保供热制冷的安全稳定。# I+ U; _. { [+ p
1 L1 }, s( y. M2 S. e% ^! Y 4.2室内系统* z# V; ~+ X- Z' X, T( L Q
$ {2 q1 ]- t( S4 R) l0 V 4.2.1高、低分区:由于最高建筑为22层住宅楼,所以室内系统分为高、低2个区,1~11层为低区,建筑面积为92141.69平方米;12~22层为高区,建筑面积为24401.78平方米。高、低区冷、热负荷计算表见下表;由于有12层楼房,12层不分区,所以低区定压按12层计算,定压压力设为0.4MPa。高区定压按22层计算,定压压力设为0.7MPa。
, Z' b. o/ R4 k 9 O& ]. h9 N& e9 f( X. o
4.2.2室内冬季采暖采用地板供热,夏季制冷采用风机盘管系统,供热与制冷的切换在室内进行。; v; T0 o; g; z8 K: X& d# T5 p
+ o' W0 _3 z7 K" F, ?, V 4.2.3室内热水系统按11层分高低区,与上水系统一起布置,入户装置与上水入户装置放入一个入户井中,热水进水管和回水管各加一块热水表,2块表计数差为该户用水量。
; a- G! B# p; X# F, m2 P& P$ [
" ^9 K6 p* U' q( M" A7 ^1 F 4.3室外管网4.3.1室外管网对应室内系统也分高、低区2个系统。低区中的B区别墅区单独引入机房,B、D区的高层1~11层单独引入机房,低区在机房内设集、分水器,有利在机房内进行调节。
+ T7 Q+ T* _9 c' C+ p1 B9 D4 A
8 \, A2 b: |# {8 s 4.3.2为节省资金投入室外管网制冷、供热用同一管网,会造成冬季采暖运行严重失调。制冷时:别墅冷负荷100W,高层冷负荷100W,温差5℃。供热时:别墅热负荷40W,高层热负荷40W,温差10℃。冬季运行阻力太小,不平衡率太大,会造成庭院管网的严重失调。采用措施是在制冷入户小室的回水管上加旁通(如下图),供热时开启旁通阀,关闭制冷回水阀,使供暖时管网阻力达到平衡。
* |3 t2 ^) C. `3 X2 v
0 M! e1 l) l% ^5 L6 q 4.3.3采用土壤源热泵:按单井120m计算,共布置了661口井,井径φ150,井间距4.5m,单U埋管。冷负荷估算:661×60×120=4759kW;热负荷估算:661×40×120=3173kW。
( ~6 K7 `; G* v. T % W; a2 l* J Q6 ]! e
4.3.4生活热水管网:生活热水管网分高、低2个区,都设循环回水管,主管线沿供热二次网布置,各楼的生活热水入户管线接至给定的上水入户井中。
6 ]" n1 w! P& \5 `1 `7 Z: J
9 }/ ?. X% `" b z+ d b) E' } 4.3.5供热制冷、生活水高低分区共8根直埋管线水平布置,并有足够的沟宽。: o, h) F! Y# _% Q8 j& i8 p3 x1 s
+ c1 J, s( K3 J* B2 ^; \ 4.4机房4.4.1设2个独立机房,一个热泵主机房及一个燃气真空炉机房。燃气真空炉机房内不设动力设备,只用管道与主机房相联。
9 R: R5 B/ y/ k# \/ s4 i, j6 A # V, N+ b% j4 ~3 q7 [
4.4.2燃气真空炉机房内安装一台1400kW(2吨)真空燃气锅炉,型号:SV-13005G-H·W。按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,冷水温度取10℃,热水温度取60℃。每天需要177t热水,考虑晚上集中6个小时连续使用,热水流量为30t/h,温差为50℃,热负荷为1380kW。燃气用量为160m3/h。3 y* h: F l* `# m
) \# y" d9 `, S- r7 H, j 4.4.3热泵主机房4.4.3.1低区:冷负荷为6877kW,热负荷3685kW,土壤源可提供4759kW的冷量,冷却塔需提供2117kW的冷量。6 X, ^( k, `) @
?& g1 O5 a, k* o' E4 d
所以可以选取型号为KCWF2620BR土壤源热泵3台,制冷量2190kW,输入功率387kW;制热量为2330kW,输入功率492kW。2台采用土壤源热泵,1台机组代热回收装置,热回收功率657kW,同时采用冷却塔冷却。
4 g0 s8 b1 G8 u6 k* l3 X $ L% ?+ M# i4 _" L' v. J
4.4.3.2高区:冷负荷为1466kW,热负荷988kW,制冷时需使用冷却塔。所以可以选取型号为KCWF2410BR土壤源热泵2台,代热回收装置,热回收功率434kW。制冷量1448kW,输入功率262kW,制热量为1555kW,输入功330kW。3 }6 P4 u3 H: z! |
& K' @- X) A) z# { 4.4.3.3土壤冷热量的平衡:
0 q7 t" n7 ]% w) F/ x) M9 @ 4 T8 q! G/ v# z
夏季放入土壤热量:4759kW×90×12×3600/109=18503GJ?4 B" ~( B$ g" R3 R# k. v3 \
' |2 V: h( d' O8 l% r0 r" Q" h7 `2 a 生活热水回收热量:1380kW×90×6×3600/109=2683GJ冬季取自土壤热量:3173kW×136×24×3600/109=37284GJ土壤可取出热量比取出的冷量大21464GJ,为达到冷热负荷的平衡,冬季需用集中供热补充21464GJ。4 g, s8 Z- c& j Z
9 v) T8 }' [& H- W6 t- Q* t 4.4.3.4热力站总用电负荷:2000kW。* E' U3 ~2 N9 ]' j3 F: X6 f
, L" k" {- P$ O1 y
5总结及结论土壤源热泵的优点是:热源稳定,可以冬季供热夏季制冷,特别是在夏季制冷时运行费用较低,有明显优势;缺点是:打井占地面积大,初投资大。集中供热的优点是:热源稳定,初投资和运行费用较低,有明显优势;缺点是:只能冬季供热不能夏季制冷,集中供热热源紧张。天然气的优点是:春秋及夏季气量充裕,运行费用适中;缺点是:冬季用气紧张,运行费用比集中供热高。在本工程中,充分综合了这3种供热形式的优势,首先土壤源夏季提供60%的冷负荷,大部分时间由土壤源制冷,从而保证夏季制冷的运行费最低,在极端负荷的情况下由冷却塔补充制冷,由于减少40%的打井数量,可以减小初投资。冬季供热时按夏季放入土壤中的热量为准,在每天的用电低谷时开启土壤源热泵,以达到最低的运行成本,不足部分以集中供热作为补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热,夏季采用热回收热泵提供,春秋二季采用燃气锅炉提供热水,这样生活热水的运行成本亦可以达到最低。本项目在节省初投资,保证土壤源冷热平衡情况下,使运行费用最低,这充分体现运用多种能源及节能技术进行供热制冷的综合优势。, t* a2 [. Z- w! q0 O6 T2 n) a
- p" h' d/ L" r6 E, S8 i3 U4 X1 K 我国随着城市建设的快速发展、人民生活水平的不断提高,人们对居住环境要求越来越高,形成了冬季南方采暖夏季北方空调的局面。但能源储量日益减少,节能减排工作已日趋紧迫,而热泵技术的应用,可使企业在供热领域开拓新的空间,实现节能减排的目的。正因此,热泵的运用在当前迅猛发展。
3 [4 v/ ]& O/ H V# Q3 y 1 U! G" d$ j6 g5 }. `
笔者认为热泵、集中供热及燃气供热各有自己的优势和局限性,在工程实践中应当发挥它们的综合优势,达到投资省、运行费用低,安全可靠地为建筑物供热制冷的目的。下面笔者对一个工程实例加以剖析。
4 {# f; A) K# P5 \
& }" F2 e: e& L! ?# A. E3 C8 W 1工程背景某$ P# ]( g$ R ]8 x9 ]" J3 t% W: c
8 l$ s- T1 R. d8 b0 N7 P8 A
小区位于唐山市高新技术开发区,地理位置优越,环境优雅,该项目共分A、B、C、D四个区,其中A、C区为普通高层公寓,采用集中供热,共设一个热力站,只提供冬季供暖。B、D区为豪华别墅和跃层高级公寓,为唐山市顶级豪华小区,要求进行冬季供热、夏季制冷、一年四季24小时提供生活热水。: D' W ^5 ~7 n1 b. y% N" p
/ H" b& ?7 t6 ~! c" M
2方案制定该0 | t2 \# ~ }# q" K
4 |3 f- W' O+ d$ Q/ z) B. B
小区B、D区定位于高端建筑市场,需提供优质的供热、制冷及生活热水服务,为此,确定可再生能源供热、制冷方案。可再生能源应用属国家重点推广应用技术,具有环保、节能、可持续利用的特点。该项目供热(制冷)方案:因为考虑到水源热泵回灌问题,随地下水下降水量不足及由此引起地面沉降问题,还有国家政策不提倡水源热泵,建议不采用水源热泵而采用土壤源供热制冷,供热不足部分以集中供热作为补充,制冷不足部分用冷却塔补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热、夏季采用热回收热泵提供,春秋两季采用燃气锅炉提供热水。本方案提供最大限度供热、制冷及生活热水保障,打造唐山市顶级绿色环保+时尚豪华小区。
( w! f' H* e9 m* f5 r) t! e6 y : o6 O2 k; p" F
3项目基本情况
* w" K* t: u9 \5 s& G' n
* L4 P& y& G1 [1 l9 ~ p 3.1项目要求:B、D区室内系统为地板供热+风机盘管系统,要求冬季供热,夏季制冷,并且提供24小时生活热水供应。
0 a0 y5 `. G) q* g' Y, @5 o0 L , T/ F+ W3 H6 z, I+ r3 M
3.2基本参数及计算基准: p4 @) U) y; j4 h% Z7 S" t7 f
; \1 n! q( w) _+ Q- l. U 3.2.1别墅:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.2高层楼:采暖热指标为40W/m2,制冷冷指标为100W/m2;3.2.3综合服务楼:采暖热指标为45W/m2,制冷冷指标为100W/m2;3.2.4土壤原始平均温度:13℃左右;3.2.5夏季平均单孔换热量60W/m;冬季平均单孔换热量40W/m;3.2.6生活热水设计参数:按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,热水温度取50℃。
+ ?2 M( q7 B" t$ s2 O6 z0 z * m9 Z, t) j& w/ d9 _+ P
4B、D区具体方案7 U3 n) |0 Z" K% g8 h/ }3 s
$ T% ^' j7 f$ b% o0 f* _" g
4.1B、D区为一个整体,共用一个热力站,都统一考虑。分3系统:夏季制冷系统、冬季供热系统及生活热水系统。制冷、供热采用地源热泵,地源冷负荷不足时用冷却塔补充,地源热负荷不足时用集中供热回水补充。土壤热源以冷量为准,热量比冷量多的部分,由集中供热一次回水的热量进行补充,达到一年内土壤冷热量的总体平衡。生活热力系统冬季采用集中供热回水加热;夏季采用可回收式热泵的冷凝水加热,附以燃气炉补充加热;春、秋采用燃气炉加热。几种热源可互为备用,确保供热制冷的安全稳定。) W9 U+ F( t) p
1 |! e; E, X4 H2 E0 |
4.2室内系统
! u V$ M, M* @3 b 5 I Z' C7 ~6 H* w
4.2.1高、低分区:由于最高建筑为22层住宅楼,所以室内系统分为高、低2个区,1~11层为低区,建筑面积为92141.69平方米;12~22层为高区,建筑面积为24401.78平方米。高、低区冷、热负荷计算表见下表;由于有12层楼房,12层不分区,所以低区定压按12层计算,定压压力设为0.4MPa。高区定压按22层计算,定压压力设为0.7MPa。
7 \. K7 o" V) i$ a9 p ' M, G6 i, F; r# _ }6 c6 `
4.2.2室内冬季采暖采用地板供热,夏季制冷采用风机盘管系统,供热与制冷的切换在室内进行。
" e8 W; J! J1 ~. H/ |
; M' A- C9 i7 L7 u } 4.2.3室内热水系统按11层分高低区,与上水系统一起布置,入户装置与上水入户装置放入一个入户井中,热水进水管和回水管各加一块热水表,2块表计数差为该户用水量。6 j3 b* M- E& N
1 B2 Q3 g; e0 ^) ]3 Y 4.3室外管网4.3.1室外管网对应室内系统也分高、低区2个系统。低区中的B区别墅区单独引入机房,B、D区的高层1~11层单独引入机房,低区在机房内设集、分水器,有利在机房内进行调节。* ?, n& }0 m, k: E
3 J' K* P8 l4 F o. {% B 4.3.2为节省资金投入室外管网制冷、供热用同一管网,会造成冬季采暖运行严重失调。制冷时:别墅冷负荷100W,高层冷负荷100W,温差5℃。供热时:别墅热负荷40W,高层热负荷40W,温差10℃。冬季运行阻力太小,不平衡率太大,会造成庭院管网的严重失调。采用措施是在制冷入户小室的回水管上加旁通(如下图),供热时开启旁通阀,关闭制冷回水阀,使供暖时管网阻力达到平衡。
4 r! H6 Y5 B5 j% U2 U" g$ U( Z 1 V5 C5 V/ ~7 o
4.3.3采用土壤源热泵:按单井120m计算,共布置了661口井,井径φ150,井间距4.5m,单U埋管。冷负荷估算:661×60×120=4759kW;热负荷估算:661×40×120=3173kW。: c( R6 B P8 h
8 H, i! |7 Q! X* t/ X( |: s
4.3.4生活热水管网:生活热水管网分高、低2个区,都设循环回水管,主管线沿供热二次网布置,各楼的生活热水入户管线接至给定的上水入户井中。 g3 D; u$ K- r8 u9 E- u0 d! y
% j% Y1 M8 ^$ \; L 4.3.5供热制冷、生活水高低分区共8根直埋管线水平布置,并有足够的沟宽。
% w6 e0 ]- E& g8 P% p* ^7 @ ! p, f& t* O7 b. M0 S
4.4机房4.4.1设2个独立机房,一个热泵主机房及一个燃气真空炉机房。燃气真空炉机房内不设动力设备,只用管道与主机房相联。' O/ g7 U! T7 w# P) S
, ?# h3 S* o, x4 h2 p6 v 4.4.2燃气真空炉机房内安装一台1400kW(2吨)真空燃气锅炉,型号:SV-13005G-H·W。按550户(其中别墅41套,豪华跃层住宅509户)、每人每日最高日用水定额100L来计算,冷水温度取10℃,热水温度取60℃。每天需要177t热水,考虑晚上集中6个小时连续使用,热水流量为30t/h,温差为50℃,热负荷为1380kW。燃气用量为160m3/h。. `) h9 j! _/ B$ Y& I* A
2 z1 B# }1 F& H2 z+ G6 N/ P 4.4.3热泵主机房4.4.3.1低区:冷负荷为6877kW,热负荷3685kW,土壤源可提供4759kW的冷量,冷却塔需提供2117kW的冷量。0 e9 P; t5 ^3 X8 M' J7 Q
& r5 [5 p+ u' \3 v 所以可以选取型号为KCWF2620BR土壤源热泵3台,制冷量2190kW,输入功率387kW;制热量为2330kW,输入功率492kW。2台采用土壤源热泵,1台机组代热回收装置,热回收功率657kW,同时采用冷却塔冷却。
* K" f x7 S0 P' V* F, N
' C& w/ \) c0 B8 T8 ]& Z& p' C 4.4.3.2高区:冷负荷为1466kW,热负荷988kW,制冷时需使用冷却塔。所以可以选取型号为KCWF2410BR土壤源热泵2台,代热回收装置,热回收功率434kW。制冷量1448kW,输入功率262kW,制热量为1555kW,输入功330kW。; ^6 l, \. S8 D W1 ?
1 W" M. N1 N6 s+ F% a
4.4.3.3土壤冷热量的平衡:% o; n9 w8 Z+ n2 i7 p
' G2 D+ l0 Z1 E# `# Y1 {
夏季放入土壤热量:4759kW×90×12×3600/109=18503GJ?* B2 L! H7 p$ X, ~5 _: E0 ^
2 C0 z. N6 U3 W) a, }1 l" Q2 y
生活热水回收热量:1380kW×90×6×3600/109=2683GJ冬季取自土壤热量:3173kW×136×24×3600/109=37284GJ土壤可取出热量比取出的冷量大21464GJ,为达到冷热负荷的平衡,冬季需用集中供热补充21464GJ。
0 Y: X! t4 q/ Z/ F6 [ : i& o& {" b! d- _2 p
4.4.3.4热力站总用电负荷:2000kW。 O/ N0 H ^* L/ L7 V
, | b3 u2 h6 i8 t1 o8 e5 {' R
5总结及结论土壤源热泵的优点是:热源稳定,可以冬季供热夏季制冷,特别是在夏季制冷时运行费用较低,有明显优势;缺点是:打井占地面积大,初投资大。集中供热的优点是:热源稳定,初投资和运行费用较低,有明显优势;缺点是:只能冬季供热不能夏季制冷,集中供热热源紧张。天然气的优点是:春秋及夏季气量充裕,运行费用适中;缺点是:冬季用气紧张,运行费用比集中供热高。在本工程中,充分综合了这3种供热形式的优势,首先土壤源夏季提供60%的冷负荷,大部分时间由土壤源制冷,从而保证夏季制冷的运行费最低,在极端负荷的情况下由冷却塔补充制冷,由于减少40%的打井数量,可以减小初投资。冬季供热时按夏季放入土壤中的热量为准,在每天的用电低谷时开启土壤源热泵,以达到最低的运行成本,不足部分以集中供热作为补充,使进出土壤的冷热量达到完全的平衡,以使土壤源长久使用。生活热水系统冬季采用集中供热,夏季采用热回收热泵提供,春秋二季采用燃气锅炉提供热水,这样生活热水的运行成本亦可以达到最低。本项目在节省初投资,保证土壤源冷热平衡情况下,使运行费用最低,这充分体现运用多种能源及节能技术进行供热制冷的综合优势。 |
|