设为首页收藏本站
搜索
查看: 3687|回复: 0
打印 上一主题 下一主题

制冷的基本热力学原理

[复制链接]

15

主题

0

好友

377

积分

高中生

Rank: 4

金币
301
积分
377
精华
0
主题
15
帖子
21
跳转到指定楼层
1#
发表于 2006-3-15 14:38:24 |只看该作者 |倒序浏览
2 G) M* v* _1 Q7 a 2 n5 s* y5 c, E, ], o: B4 \0 k" ?1 h3 B/ W( U3 J% j8 Q# B. d; X1 E7 ^, l9 o8 F% |; [4 S5 y" p( y1 E- }7 I3 I9 V4 V0 v' v" y$ Z* H: o( C9 I7 [) X" m7 I) B! f* G% Z
. F% k) H b v6 z

制冷的基本热力学原理

/ ? J/ ]: I# ]) n0 b( f
6 P$ j( ~3 ?) S0 f6 \, X
8 U+ a2 m4 w. B+ K/ R
! d1 B% h# b' T9 X/ S

2 M! q/ Y; A% y! o5 Z+ F

   从热力学角度说,制冷系统是利用逆向循环的能量转换系统。按补偿能量的形式(或驱动方式),前面所提及的制冷方法归为两大类:以机械能或电能为补偿的和以热能为补偿的。前者如蒸气压缩式、热电式制冷机等;后者如吸收、蒸气喷射、吸附式制冷机等。
两类制冷机的能量转换关系如图1所示。

" I5 n4 B1 f2 H% f


图1 制冷机的能量转换关系
(a) 以电能或机械能驱动的制冷机        (b) 以热能驱动的制冷机

4 g5 \, K& W( t3 |4 d

  热力学关心的是能量转换的经济性,即花费一定的补偿能,可以收到多少制冷效果(制冷量)。为此,对于机械或电驱动方式的制冷机引入制冷系数 来衡量;对于热能驱动方式的制冷机,引入热力系数 来衡量。
                                  (1) 
                                  (2)

* Q# d4 O* Y9 `- N- w

( U6 h) g7 m& z" y/ ?$ s7 S

式中 ----- 制冷机的制冷量;
―― ------ 冷机的输入功;
―― ----- 驱动热源向制冷机输入的热量。

% D/ Z( l) v' l5 G0 T

   国外习惯上将制冷系数和热力系数统称为制冷机的性能系数COP(Coefficience of Performance)。我们要研究一定条件下COP的最高值。

[% F/ q; h5 ~, g, }

  对于电能或机械能驱动的制冷机,参见图1(a)。制冷机消耗功w实现从低温热源(被冷却对象,温度 )吸热,向高温热源(通常为环境,温度 )排热。假定两热源均为恒温热源,向高温热源的排热量为 ,由低温热源的吸热量(即制冷量)为 ,制冷机为可逆循环。

\2 H @8 ]8 j1 G0 s

   由热力学第一定律有

, B4 G* [* z1 i9 M

                                   (3)  

; E! \; g& ]( M" r6 C

   由热力学第二定律,在两个恒温热源间工作的可逆机,一个循环的熵增等于零,即
                                       (4)

3 C+ W7 C* c$ v+ Z3 e# P. f; O, {' }

   将式(3)代入式(4)得           

8 K+ t3 a4 A# z% w1 L3 V9 |

即                                 (5)

! y" l" n. f }3 z$ B* ^

   由定义式(1),则可逆制冷的制冷系数为

v6 L9 t$ r- v: d4 d" X$ p

                               (6)

& ^2 {/ G6 q7 m, @

   式(6)说明:①两恒温热源间工作的可逆制冷机,其制冷系数只与热源温度有关,而与制冷机使用的制冷剂性质无关。② 的值与两热源温度的接低程度有关, 越接近( / 越小),则 越大;反之 越小。实际制冷机制冷系数 随热源温度的变化趋势与可逆机是一致的。

" O% `$ a. W7 \) t

   对于以热能驱动的制冷机,参见图 。制冷机从驱动热源(温度为 )吸收热量 作为补偿,完成从低温热原吸热,向高温热源排热的能量转换。我们假定驱动热源也是恒温热源,其它假定同前。那么类似地推导热能驱动的可逆制冷机的性能系数

6 `7 y- D9 @) ` f. V+ \3 h2 u7 F- ]

   由热力学第一定律有:

1 w/ Q+ t+ e4 S% G+ B+ G

                                 (7)

1 j7 |) m) F2 T1 E% w2 z' i

   由热力学第二定律,循环中

) N# W" Q3 `3 D2 j. V

                                  

) J3 }; s+ b$ b9 }0 h6 f5 _

1 L9 t! Z1 T5 f! u! s& @

                                    (8)

1 i2 |0 X' O- e5 |" R0 I S4 d

   利用式(7), (8)和定义式(2)得出,热能驱动的可逆制冷机的热力系数
                            (9)

4 ^' |: G& t) G% y) c' X

   上式右边的第一个因子就是上面导出的在 温度之间工作的可逆机械制冷机的制冷系数 ;而第二个因子 则是在 温度之间工作的可逆热发动机的热效率。故它相当于用一个可逆热机,将驱动热源的热量 转换成机械功 = 再由 去驱动一个可逆机械制冷机。见图2。这说明 在数量上不具备可比性,因为补偿能 的品位不同。

% F# x& T3 o7 F# D; z, u


图2 热能驱动的制冷机等价关系图

+ g5 u* G" @* z; Z

  式(9)同样说明,热能驱动的可逆制冷机的性能系数(或热力系数)也只与热源的温度 有关,而与工质的性质无关。 越高(驱动热源的品位越高)、 越接近,则 越大;反之, 越小。

! H* U/ [( j8 K8 n& p

   式(6)和式(9)给出一定热源条件下制冷机性能系数的最高值 。故它们是价实际制冷机性能系数的基准值。实际制冷机循环中的不可逆损失总是存在的,其性能系数COP恒小于相同热源条件下可逆机的性能系数COPc。用制冷循环效率 评价实际制冷循环的热力学完善程度(与可逆循环的接近程度), 又叫制冷循环的热力完善。定义
                                (10)
或                  (机械能或电能驱动的制冷机) (11a)
                   (热能驱动的制冷机)      (11b)
恒有                                        (12)

9 N3 N o" J- \( e2 B- C6 N

    越大,说明循环越好,热力学的不可逆损失越小;反之, 越小,则说明循环中热力学不可逆损失越大。

% \. J# j5 I6 y

   性能系数COP和热力完善度 都是反映制冷循环经济性的指标。但二者的含义不同,COP反映制冷循环中收益能与补偿能在数量上的比值。不涉及二者的能量品位。COP的数值可能大于1、小于1或等于1。COP的大小,对于实际制冷机来说,与工作温度、制冷剂性质和制冷机各组成部件的效率有关;对于理想(可逆)制冷机来说,只与热源温度有关。所以用COP值的大小来比较两台实际制冷机的循环经济性时,必须是同类制冷机,并以相同热源条件为前提才具有可比性。而 则反映制冷机循环臻于热力学完善(可逆循环)的程度。用 作评价指标,使任意两台制冷机在循环的热力学经济性方面具有可比性,无论它们是否同类机,也无论它们的热源条件相同或是不同。

+ K, H/ s- Y4 k* E* F, c

活到老,学到老!
您需要登录后才可以回帖 登录 | 注册

《压缩机》杂志

Archiver|手机版|中国制冷网论坛- ( 陕ICP备12001613号-8 )  

GMT+8, 2024-6-15 17:36 , Processed in 0.119869 second(s), 22 queries .

回顶部